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For an arbitrary integer N, the expansion theorem 

Ir > -- r < I N= rN> ~z ~k (2l + 1)Tz~(r </r>)kpt(cosO) 

is derived by an induction method, which yields explicit expressions for the expansion coefficient T s /,k" 
Such expansions are useful in molecular theory because functions (r') N with r '=  I t > -  r<l are contained 
in many operators. This investigation provides also a basis for the derivations of expansion theorems 
for more complicated functions which will be dealt with in later articles of this series. 
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1. Introduction 

In the first paper of this series [1], hereafter referred to as Paper I, general 
concepts and methods for deriving addition theorems for functions of physical 
interest were discussed. It turned out that most methods encounter great dif- 
ficulties, and that there is no straightforward way how to obtain the desired 
expansion theorems. This series of articles deals with derivations of such expansion 
theorems for certain classes of functions. In order to emphasize the relations be- 
tween different formulas, a uniform "analytical" approach will be employed. This 
allows to derive explicit expressions for the expansion coefficients by relying only 
on common procedures of analysis. 

For molecular calculations, the transformational behavior of quantum 
mechanical operators as well as that of wave functions is of great interest. Especially 
for the handling of operators not only translations or one-center expansions, but 
also multicenter expansions are useful. They, however, can only be obtained by 
studying the tranformations under translations first. The function r N represents 
many operators and is part of many wave functions as well. Therefore, in the 
present article, the translation of r N is considered, i.e. the translation of (positive 
or negative integer) powers N of the length r of the local vector r. This investigation 
provides also a basis for the derivations of expansion theorems for more complicat- 
ed functions as, for instance, (kr)-NjN(kr), rNe -~r, rNyLM(o, r jL(kr)yLM(O, dp), and 
other functions, which will be given in future work. Here, the j~ denote spherical 
Bessel functions, the yM(o, r are surface spherical harmonics. 
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If a field is defined by the functionf(r) ,  the same field translated by the vector 
R is given by P~f(r)= f ( r )  with r ' =  r - R ,  where the translation operator P~ is 
defined by exp ( -  R.  0/0r). As was discussed in I, the translation of a certain field 
should be represented by an expansion which has the form of an addition theorem, 
cf. Eq. (I.3.9). Furthermore,  it is desirable for physical applications that in the 
addition theorem the radial and angular dependencies be separated according to 
Eq. (I.3.15), which corresponds to an expansion in spherical harmonics. This 
expansion o f f (V )  may then be referred to as a "translation formula", which 
describes the translation off(r).  In the following, translation formulas for (r') N 
will be derived; the next section deals with special, the third section with general 
powers N. 

2. Trans lat ions  o f  fv for N---- + 1, _+ 2, - 3 ,  - 5 

The derivation of the formula for the translation of general powers r N of the 
length r of the local vector r will be based on an induction method. Therefore, the 
translation of some special powers r N must be considered first, which will be done 
for N = _+ 1, + 2, - 3, and - 5. For  these special powers it is sufficient to consider 
translations along the z-axis. Therefore, in this section the vector R is assumed to 
coincide with the z-axis. Then, the angle o) between r and R as defined by Eq. (I.3.18) 
becomes the polar angle 0 of the local vector r with respect to the z-axis. Of course, 
one still has r' -- r - R and r< = Min(r, R), r> = Max(r, R) as defined by Eqs. (I.3.1) 
and (I.3.17). The generalization of the translation formulas to translations in 
arbitrary directions can easily be obtained and will be given for arbitrary ex- 
ponents N in the next section. 

The translation of r 2 is determined by the cosine theorem itself, because 

( r ' )  2 = r 2 + r 2 - 2r< r> Pl(cos0).  (2.1) 

The translation ofr can be described by multiplying Eq. (2.1) with the Laplace 
expansion Eq. (I.3.16). Using Bonnet's formula [2-4]  

(21 + 1)~Pz(() = (l + 1)P, +, (() + IP z _ 1 (0 (2.2) 

with PI(~) = ~ =cosO and renaming certain summation indices, one obtains 

r' = r > ~,F= 0 [(2l + 3)- 1 (r </r >)z+ 2 - -  (2l - 1)- 1 (r </r >)l] Pt (cos 0). (2.3) 

The translation o f t  -~ along the z-axis is given by Eqs. (I.3.16) and (I.3.17), 
if co is replaced by 0. 

The translation ofr -2 is obtained by applying Cauchy's double series theorem 
to the product of two Laplace-type expansions of (r')- 1. Due to this theorem [5, 6], 
the product of two infinite series, which are absolutely convergent, is unchanged if 
the terms are rearranged in order to form the "Cauchy product" according to 

2~= o qkZ~ ~ oq~ = Z~= 0 Zig = o qkqj-k. (2.4) 

As Mertens has shown [7, 8], it is sufficient that at least one of the two infinite 
series of the product is absolutely convergent. This property will be used later. 
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With 

qk = (r </r > )k pk(COsO) , (2.5) 

applying the coupling rule for spherical harmonics with the same arguments as 
given by Rose [9], the product of two Laplace expansions as defined by Eq. (I.3.16) 
yields 

(r') - z  =(r>) -z ~]~=o (r</r>} i ~ = o  ~ ,  P,(cosO)C2(k,J - k ,  l; 0, 0). (2.6) 

The summation over I is restricted by the condition 

111 - 12[ ~ 13 ~ 11 d- 12 , 11 + 12 d- 13 even, (2.7) 

with 11 = k, 12 = j - k ,  and 13 = I. It is advantageous to express the square of the 
Clebsch-Gordan coefficient [10], which here is defined in Rose's notation [11], 
by double factorial functions. Using the definitions 

(2n)! ! = 2 . 4 . 6 . . -  (2n)= 2"n!, (2.8a) 

(2n+ 1)!!= 1- 3 .5- . . (2n + 1)=(2"n !)-1(2n+ 1)!, (2.8b) 

0 ! ! = ( - 1 ) ! ! = 1 ! ! = 1 ,  (2.8c) 

( n -  1)!! 
e(n) = n!! ' (2.8d) 

for natural numbers n, one obtains 

C2(ll, l 2, l 3 ; 0, 0) = (2/3 + 1)e(l 1 + 12 + 13 + 1)c~(/1 + 12 - 13) 
(2.9) 

~(12 -t- 13 -- 11)0~(/3 d- l 1 -- 12)6(11, 12 ;/3)" 

The symbol 6(l 1, l 2 ;/3) equals one if the condition Eq. (2.7) is fulfilled, but is zero 
otherwise. This ensures that the double factorial functions have no negative 
arguments. 

If in Eq. (2.6) the summations over k and l are interchanged, the condition 
Eq. (2.7) requires that the new I values run over 

{~ (/even) 
l = j ' j - 2 ' j - 4  . . . .  ( /odd) ,  (2.10) 

whereas k runs in steps of one between the limits 

( j -  l)/2 <= k < (j + 1)/2. (2.11) 

The k-summation yields the interesting result 

~k C2( k, J - k, l; 0, 0) = (2/+ 1)e(/-  l)e(/+ l + 1), (2.12) 

which does not seem to have been given before. A comparison with Eq. (2.9) 
shows that a remaining factor 

Sl = s  o~(l + j - -  2k)~(l--j + 2k) (2.13) 

is suppressed because, strangely enough, it is equal to one for any l and j. The 
factor 6 ( k , j - k ;  l) has been omitted in Eq. (2.13) because it equals one within the 
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range of the index k and zero outside this range. Substituting 2 = ( l + j - 2 k ) / 2  
yields 

Sl = ~ = o  e(22)a(2/- 22). (2.14) 

For [xl < 1 the binomial theorem gives 

(1 + x)- 1/2 = ~]o= o ( -  1)ac~(22)x z. (2.15) 

The Cauchy product of this series with itself yields 

(1 + x ) -  1 = ~T=o ( -  1)IxlSl �9 (2.16) 

It is obvious from the power series expansion of (1 + x)-1 that S~ = 1. Therefore, 
from Eq. (2.14) one obtains the formula 

Zi=o k l - a  / ' 

if the functions e are expressed by binomial coefficients. 
If the summations over j  and I are interchanged, Eq. (2.6) becomes finally with 

the help of Eq. (2.12) 

( / ) -2  =(r>)-2  ~, ~2) (21+  1)c~(j-l)a(j+ l +  1)(r</r>)JPt(cosO). (2.18) 
I = 0  j=l  

At the second summation symbol it is indicated that the summation overj  proceeds 
in steps of two. 

The formula for the translat ion o f  r -3  may be interpreted as a one-center 
expansion of r~-~, which is needed, for instance, for the calculation of magnetic 
spin-spin interactions. The expansion of (r')-3 may be obtained by differentiating 
the expansion of ( / ) -1,  which is given by Eq. (I.3.16) with respect to cosco and 
applying the recursion relation [-2, 3] 

P', +1 (.~) = (2l+ 1)P,(~) + P~_, (~) (2.19) 

repeatedly [12]. By differentiating the relationships obtained by this method, one 
can derive the translation formulas for the higher odd inverse powers of r in a 
successive way. However, it is advantageous to use another approach in order to 
emphasize certain geometric aspects of the problem, which become apparent in the 
translation of r-3 and are of importance in other formulas later. 

Because in this section it is assumed that R coincides with the z-axis, the cosine 
theorem for the triangle defined by r ' =  r -  R requires that 

cos0' = (rZ/2r'R) - (r'/2R) - (R/2r'). (2.20) 

From the expression for (cos0')" one can obtain the expansion of (r ' )  - 2 n - 1  in an 
iterative way. Using cos0 '= P1 (cos0'), it follows 

(r ')-  3 = R ( R  2 _ r 2)- 1 [- _ 2(r')- 2 P1 (cos0')-  R - 1 (r')- 1]. (2.21) 

The functions in the last bracket are special irregular solid spherical harmonics 
which can be translated along the z-axis according to the following formulas: 
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Using/~l  [cos(re - 0')3 = ( - 1)z +,, PT'(cos0'), one has [ 13] for R < r 

P~z (cos0') ( l + k - m )  R k 
(r,)t+l - ~ = o  ~ l -  m ] ~ PT'+ k(COS0). (2.22a) 

However, one has [14] for R > r  

P'p(cosO')__~:lml(__l),+,,(ll+k ~ r t 
(r')' + 1 . ~ P~" (cos0), (2.22b) 

where the polar angle of r is 0 and that of v' is 0'. These two relationships are 
examples of the translation of non-scalar functions and correspond to Eqs. (I.3.21a) 
and (I.3.21b) and, therefore, to the two cases discussed at the end of Section 3 of I. 
For each case the appropriate expansion for (r')-2pl(cosO ') and (r')-i must be 
inserted into Eq. (2.21). After some manipulations, one obtains 

= r e aa- 1 Voo (2l+ 1)(r</r>)lPt(cosO). (2.23) ( / ) -3  [r>( r 2 -  < -  z~,=o 

This formula is valid for both cases because (r')- 3 is a scalar function. The separa- 
tion of the variables r> and r< can be achieved by expanding the first factor in a 
power series. This yields 

(r')-3 = (r >)-3 ~ ~2)  (21+ 1)(r </r >)JP,(cosO). (2.24) 
/=0 j=l 

Squaring Eq. (2.20) and using (cosO')2=[2Pz(cosO')+ 1]/3, one can express 
(r,)-s as a sum of terms (r')-3P2(cosO'), (/)-3, and (/)-1,  multiplied by some 
functions of r and R. Using the expansion of (r')-3 as given in Eq. (2.24) and the 
translation theorems Eqs. (2.22a) and (2.22b), one arrives at the formula for the 
translation of r- 5 : 

(r ')-5=(r>) -5 ~ ~2)(3!)-l(21+l)(j-l+2)(j+l+3)(r</r>)JPz(cosO). (2.25) 
/=0 j=t 

There are many applications of these expansions. The last one is especially needed 
for calculations of spin-spin interactions, because the Hamiltonian representing 
the coupling of two magnetic moments contains r125 in addition to r[23. 

3. Translations of  r N for an Arbitrary Integer N 

The formulas for translations o f t  N for an arbitrary integer N can be derived by 
using the geometry of the vectors which occur and the results of the last section. 
Assuming again that the vector R of the triangle defined by r' = r - R  coincides 
with the z-axis, the cosine theorem gives 

( r ' )  N = (r  2 + R 2 )  N/2 [1 - O (r, R)~] Iv/2 (3.1) 

with the abbreviations 

o(r, R) = 2rR(r 2 + R 2)- 1 , ~ = cos0. (3.2) 

Because Io(r, R)I < 1 unless r=R, it holds that Io(r, R){[ < 1 except for r ' = 0  and 
r' = - 2R. If these points are excluded, the binomial theorem allows the expansion 
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of the square bracket raised to the power N/2 in a series in terms of powers of 
Q(r, R)(. If this is done, the powers of ( can be expressed by Legendre polynomials 
according to the formula [15, 16] 

. . p  . p 
= a, ,(0 + a,_ 2 n - 2 ( i f )  -~- 

... + ~a~ for even 1 (3.3) 

[aTPl(O for odd 1, 

which may be written as 

( , =  ~]2)a~Pv((), (3.4) 
v = [ 0 , 1 ]  

introducing a new summation symbol for later use. The coefficients 

a"~ = n !(2v + 1)[(n- v)!!(n + v + 1)!!]- 1 (3.5) 

play an important role in all following formulas. Therefore, it is advantageous to 
define for integers p and q the functions 

fl~ = [ ( p -  q) ! !(p + q + 1)!!] - 1, (3.6a) 

7~=(p_q) ! ! (p+q+  1)!!, ~= ( f i~ ) - l ,  (3.6b) 

using the double factorial functions as defined by Eqs. (2.8a)-(2.8d). 
If the aforementioned expansions are introduced into Eq. (3.1) one obtains 

after a change of summations according to 

~(2) = ~ ~2)  (3.7) 
t = O  / = [ 0 , 1 ]  / = 0  t = l  

the following expansion: 

(r')U= (rE+ RE) N/2 ~ 272)( - 1)'(2/+ 1)fl~ 

l=o ,=l (3.8) 
N(N - 2)...(N - 2t + 2)2-t~t(r, R)Pt(O. 

Because this expression is symmetric in r and R, one can utilize the fact that 
(r  2 + R 2) = (r 2 + r 2 )  and rR = r< r>. With x = r</r> it holds that 

(r 2 + R2) N/2 ~t(r, R) = rS> 2txt(1 + x 2 )  (N /2 ) - t  . (3.9) 

For r r R, which means x < 1, the last factor can be expanded in a power series as 

oo 

(l+xZ)(N/2)-t= ~(2)(j!!)-l(N-2t)(N-2t-2)...(N-2t-j+2)xJ, (3.10) 
j=0 

where Eq. (2.8a) has been used. 
It is economical to define 

I I~2,=a(a-2) . . . (a-2n+2) for n = 1 , 2 , 3  . . . . .  (3.11a) 

/ / ~ , = 0  for n = - - 1 , - 2 , - 3 , . . . ,  (3.11b) 

o - ( 3 . 1 1 c )  H o -  1 
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for an arbitrary a. If the constant a is an even positive integer, one has 

//zz,"=0 for n > m + l ,  n , m = l , 2 , 3 , . . . .  (3.11d) 

For even positive N, the series in Eq. (3.10) becomes a finite sum, because the 
coefficient /7 .u-2t vanishes for j > N - 2 t .  In this context the products H~, of 
factors, which descend in steps of two, are of greater advantage than Pochham- 
mer's symbols [17, 18], which are defined by products of factors which ascend in 
steps of one: 

(a),,=a(a+ 1 ) . . . ( a + n -  1), (a)o = 1. (3.11e) 

Inserting Eqs. (3.9) and (3.10) into Eq. (3.8) and using 

2) 2) f t , j  = Z (2) ~-~(2) 4" /~ J a - j + l , j  
t=l j=O a = 0  j=O 

(3.12) 

one obtains 

(r,)N = rN> ~ ~2)  (2/+ 1)S~,~x ~ +'P/(O �9 (3.13) 
/=0  a=O 

Now the coefficients SIN,~ are determined by 

sNI, = ( _ I ) ' ~ 2 ) ( I I , ' I - I F I N  R l + a - J  
kl" "1 **2l+2~r-jlJ1 

j=O 
(3.14) 

Inserting the complete expressions for H and fl, one sees that this sum can be 
split into two sums according to 

&N,=(N+2)-*(N+2--21--2-'~ , . (3.15) 

The second term is obtained by substituting j - 2  = ~ and considering 

~-~(2) ~[iT T'~-I FI N RI + a - J  
/~  JV" "1 * a 2 1 + 2 a - j - 2 1 J l  
j=O 

a - 2  
~__ H N R l + ( a - 2 ) - *  2 ( 2 )  ("C [ !) - 1  21+2(a_2)_.~lJl 

~=0 

(3.16) 

At this point it is convenient to substitute o- = k -  1 and 

SzN, k- l = T# l&" (3.17) 

Then, Eq. (3.15) may be written as 

( N  + 2 -  = ( N  + - , �9 " (3.18) 

The expansion of  (r')N finally becomes 

(r')N=r~ ~ ~ 2 ) ( 2 / +  1)Tl~(r</r>)kPz(cosO) 
I=0 k=l 

(3.19) 
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with different expressions for the coefficients T~,~ for the following cases: 
I) N is a posi t ive  even integer ( N  = 2, 4, 6 . . . .  ), k =  l, l +  2 . . . . .  N - l  

N l k N - k  N T~,k = ( -  1) fit flz 70 ,  l + k < N  ; (3.20) 

II) N is a posi t ive  odd integer  (N= 1, 3, 5, ...), k = l ,  / +  2 . . . . .  N + l +  1 

Tl  N _ _ (  l ] ( 3 1 + k _ N _ l ) / 2  ( l + k - N - 2 ) ! !  fl~7~, , , - , - ~ ,  ( - i ~ _ ~ - ~ l ~ . V .  l + k > N + l ;  (3.21a) 

N l k N - k  N T~,k= ( -  1) fl~fl~ 70 ,  l + k < N -  1 ; (3.21b) 

III) N is a negat ive  integer (N=  - 2 ,  - 3 ,  - 4 ,  - 5  . . . .  ), k = l , / + 2 ,  ... 

T l , N k = f l k f l o N - 3 7 1 N + k - 3  , T~-l,k x =(2 /+  1 )  - 1  61, k (3.22) 

The functions tip and 7q p are defined by Eqs. (3.6a) and (3.6b). The coefficients T, s l ,k  

vanish if the indices k and I assume values outside the given ranges. This terminates 
the summations defined in Eq. (3.19) in cases I and II such that the summation 
indices run only within the limits 

O N I N N / 2 ,  l < k < - N - l  for case I, (3.23a) 

0__</<oo, l < _ k < _ N + l + l  for caselI.  (3.23b) 

The k values proceed in steps of 2. 
The recursion relation Eq. (3.18) allows one to prove that in fact the expansion 

Eq. (3.19) is valid if the coefficients Tz,~ are given by Eqs. (3.20)-(3.22). This is 
possible because the coefficients T, N of an expansion (r') N with an arbitrary integer l ,k 

N can be connected with those of the expansions (r') N with N = + 1, _+ 2, - 3, which 
are given in Section 2. One may assume for a moment that the expansion co- 
efficients in Eq. (3.19) are denoted by ~,~, whereas the expressions given by 
Eqs, (3.20)-(3.22) are still denoted by Tt~. If ~,~ would differ from T, N l,k, one could 
measure the deviation by O N putting l , k ,  

N N ( 3 . 2 4 )  r~,k= r~,~ + 0,,k �9 

Then, the recursion relation of Eq. (3.18) holds also for OtNk . In the following it will 
be shown that the quantities 0,u,k vanish in all cases. 

In case I a comparison of Eq. (2.1) with Eqs. (3.19) and (3.20) shows that 
O~,k = 0 for all l, k. Because of Eq. (3.18) all 0~, k with N = 2, 4, 6 . . . .  vanish if2k r N + 2. 
I f 2 k - - N + 2  one has N Ot,(N/2) + 1 = Of,iN~2) - 1 = O. 

In case II it follows from a comparison of Eq. (2.3) with Eqs. (3.19), (3.21a), 
and (3.21b) that 0~k=0 for all l, k. Therefore, one has 0~k=0 for N =  1, 3, 5 . . . .  
due to Eq. (3.18). 

In case III the recursion relation Eq. (3.18) will be used in the form 

N o [ O N o  k - 2 DNo - 2" 1 = ( N  O _ 2k)O~Ok (3.25) , - - t " l , k - - 2 d  , . 

If 0~, = 0 for a certain N o < 0, it follows, because N o # 2k, that 

ONo - 2 - - ~ / ~ N  o - 2 _ _  - - / 7 ) N  o - -  2 (3.26) 
l ,k  - - t " l , k - - 2 - -  " '"  - - t " l , l  " 
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However, 0~l =0  as can be seen from Eqs. (3.14), (3.17), and (3.22). The expansions 
Ol, k of (r') -2 and (/)-3,  given by Eq. (2.18) and Eq. (2.21), respectively, yield -2 

01_3=0 for all l, k. Putting N o =  - 2 ,  - 4 ,  ... and No= - 3 ,  - 5 ,  ..., respectively, it 
follows from Eq. (3.26) that 0~  = 0 for any No, q.e.d. 

It may be noted that in the cases I and II the correctness of Eqs. (3.19), (3.20), 
(3.21a), and (3.21b) can also be shown by a complete induction. The general 
formulas for the coefficients T, u + 2 t,k can be obtained from those for T~,~ by multiply- 
ing the expansion of (r') N as given by Eq. (3.19) with the expression for (r') 2 as 
given by Eq. (2.1) and applying the coupling rule for spherical harmonics [9]. 
In case III the induction requires the multiplication of the expansion of (r') N with 
that of (r')- 2. Because (r')- z is given by a complicated infinite series [-see Eq. (2.18)], 
the induction procedure seems to be too difficult. 

So far, it has been shown that the coefficients Tl,~ as given by Eqs. (3.20)-(3.22) 
are correct. In the first place, the formulas for these coefficients are found by 
inspection of the expressions which are obtained by successive application of 
Eq. (3.18). This is similar to the procedure which is necessary for the complete 
induction. For negative N, the successive procedures as described in Section 2 
have been used. 

The two summations, which determine the expansion of (r') N, are both finite 
in case I, because then the coefficients Tz~ vanish for 1+ k > N and l>  N/2 as is 
seen from Eqs. (3.14) and (3.11d). In case II, one summation is infinite, the other 
one is restricted, since Tt,Uk =0  for k > N + l +  3. This follows from the recursion 
relation Eq. (3.18) and the fact that N TI,N+z+3=0, because the sum given by 
Eq. (3.14) reduces to the binomial expansion of(1 - 1) (N+ 3)/2. In case III the summa- 
tion over I as well as that over k is infinite. 

Of course, the expansion Eq. (3.19) holds for arbitrary parallel coordinate 
systems if Pt(cos0) is expressed by the addition theorem Eq. (I.3.19) because 0 
denotes the angle between r< and r>. 

4. Discussion and Relation to Previous Work 

In Eq. (3.19) together with Eqs. (3.6a), (3.6b), and (3.20)-(3.22), a spherical- 
harmonic expansion of the function (r') N is given for arbitrary integer N. This 
expansion represents a translation of the field defined by the function r N. The 
coefficients Tl,~ as given by Eqs. (3.20)-(3.22) are closely related to the coefficients 
contained in expansions of other functions, as will be shown later. Therefore, the 
present investigation is a first step in the direction of expanding more complicated 
functions to be considered in future work. Furthermore, the functions r N have the 
advantage that they can be used as expansion bases for other scalar functions. 

Functions r N play an important role in many physical problems. For instance, 
because interatomic potentials contain terms r N, expansions of r N are needed in 
the theory of molecular interactions. Therefore, the interest of a number of 
research workers has focused on that function. 

In 1956, Balescu [19] tried to reexpand a series of Gegenbauer polynomials 
into one of Legendre polynomials but could not give the coefficients in closed 
form. He arrived at an expansion of an integer power of r, but gave the expansion 
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coefficients only as finite sums. This may be the reason why his result was 
erroneously considered as being not correct [20]. Already in 1916 Chapman [21] 
evaluated these sums, but his work remained widely unknown. In 1961, Fontana 
[22] gave a formula for the translation ofr  -z  in which the variables were not com- 
pletely separated. In 1964, Sack [23] started a series of very fruitful investigations 
in this field by giving, among others, expansions in spherical harmonics of func- 
tions r u with arbitrary N, approaching the problem as discussed in Section 4.2 of I. 
Utilizing the dimensionality of the function r N and its continuity properties as 
r<~0,  Sack was able to specify for this function the radial dependency of its 
expansion in form of a power series and to determine the coefficients by solving 
the radial differential equation given by Eq. (I.4.12). This approach may be very 
difficult or even impossible for other types of functions which are to be expanded. 
Sack expressed his expansion theorems in terms of hypergeometric functions of 
the radial variables. Due to the inherent complexity of these functions, these 
expressions are less suitable for practical applications than the formulas contain- 
ing coefficients T~,~. Furthermore, it seems difficult to use Sack's formulas as a 
starting point for the derivation of factorless multicenter expansions [24]. 

There are several papers which contain translation formulas for special 
powers of r. Some of them have been applied in textbooks of the theory of atomic 
spectra [25]. Judd [12] treated r-3 and r-5 showing that by successive differentia- 
tion one can arrive at expansions for higher negative odd powers ofr. Perkins [26] 
derived by complete induction the addition theorem for r N, where N is a positive 
integer. In 1971, Yasuda and Yamamoto [20] derived a bipolar expansion of r N 
in the non-overlapping, not spherically connected region [27], which contains the 
translation formula as a special case, by making extensive use of tensor algebra. 
For negative integer values of N they used this expansion in the theory of phase 
transitions in solid methane. However, for positive odd integer values of N they 
gave a finite series which obviously does not hold. A new aspect of the expansion 
of r12 and r~-r in terms of spherical harmonics was considered by Cressy and 
Ruedenberg [28], who expressed the non-analytic factors (rl<//> +1) by further 
expansions in terms of analytic functions of rl and r2. 

Some authors applied methods different from those discussed so far. Matcha 
and Daiker [29] gave expansions of r u in spherical polar and confocal elliptical 
coordinates without performing the inner summations, utilizing solutions of 
separable differential operators which annihilate the functions which are to be 
expanded. In 1967, Ruedenberg [30] investigated the problem of bipolar ex- 
pansions by means of the Fourier transformation method representing the radial 
expansion coefficients by integrals over spherical Bessel functions. Of course, his 
results may be specialized to describe translations. This method was discussed in 
Section 4.1 of I. Using the method of Fourier transformation, Salmon, Birss, and 
Ruedenberg [31] gave a spherical-harmonic expansion of the Coulomb potential. 
Expanding the spherical Bessel functions in terms of Laguerre polynomials, the 
radial integrals could be evaluated and gave the expansion coefficients as infinite 
series of Laguerre functions. Several authors [32-34] discussed the translation of 
solid spherical harmonics, because they are of great physical interest. These func- 
tions are special cases of r N YLM(O, ~9) which was first expanded by Sack [35]. An 
expansion theorem for this function was also obtained by Kay, Todd, and Silver- 
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stone [36] by application of Ruedenberg's Fourier transformation method. The 
evaluation of the radial integrals was possible by utilizing the theory of generalized 
functions. However, this method fails to yield explicit formulas for r N with N = - 2, 
- 4  . . . . .  Based on the derivations given in the present paper, one-, two-, and 
multicenter expansions for those and other functions can be obtained, as will be 
shown later. 
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